Clinical Trials
Section 2
Designs for Clinical Trials
Domenic J. Reda, Ph.D.
Acting Director , CSPCC
Hines, IL
Overview of Decomposition
Overview of Presentation
Types of Study DesignsRCT Background
RCT Design ElementsClassification of Trials
Types of Clinical Trial Designs

Types of Study Designs Descriptive

- · Case Reports
- · Case Series
- Cross-Sectional Surveys

Types of Study Designs Analytic-Observational

- · Case-Control
 - Subjects with (cases) and without (controls) a disease (outcome) are selected to determine if a treatment (exposure) occurred in the past
- Cohort
 - Subjects with and without an exposure (treatment) are selected
 - Subjects are followed to determine if a disease (outcome) occurs

Types of Study Designs Intervention (Clinical Trial)

- A cohort study in which the investigator controls the assignment of subjects to the treatment (exposure)
- Subjects are followed and the treatment effect on a disease (outcome) is observed

•		_
		_
		_
•		
•		
		_
•		
		_
•		
		_
		_
•		
		_
		_
•		
		_

Types of Study Designs Randomized Clinical Trial

 A RCT is an intervention study in which the treatment assignment is random rather than systematic

Advantages of a RCT

- A well-designed clinical trial provides the strongest evidence of any study design that a treatment causes a response
- Groups are as alike as possible except for the assigned treatment
- · Precision is maximized
- · Bias is minimized

The Basic 2 Group RCT

- Basis for differences between responses of the two groups
 - Sampling variation or chance
 - Inherent differences between the two groups
 - Differences in handling and evaluation during follow-up
 - The true treatment effect

Minimizing likelihood that treatment difference is due to sampling variation	
or chance - accept small significance level (p value) for statistical tests	
 P=.01: there is a 1 in 100 probability that the difference observed is due to chance 	
]
Minimizing likelihood that treatment difference is due to inherent differences	
between the two groups - Randomization	
Stratification of the randomization	
	1
Minimizing likelihood that treatment difference is due to differences in handling and evaluation during follows.	
handling and evaluation during follow- up – Blinding	
Maximizing compliance with treatment Minimizing withdrawals from study	

· When these potential causes are well controlled, the only possible explanation left for the observed difference: There truly is a treatment difference Randomization • Each study participant has the same chance of receiving each of the treatments Probability of one patient being assigned a particular treatment is independent of the probability of any other patient being assigned that treatment · Haphazard does not equal random Randomization (continued) Advantages - Eliminates treatment selection bias - Tends to create groups that are comparable for all factors that influence outcome, known or unknown - Gives validity to the statistical tests Disadvantage - Randomization does not guarantee comparable

- Any baseline differences that exist are attribute to

chance rather than bias

Blocked Randomization

- It is possible for all participants to be assigned to one treatment by chance
- Blocked randomization makes sure group sizes are equal by stopping assignment to a group once it reaches a preassigned level
- Balance at end of the study
- · Balance at interim time points
- Permuted blocks: randomly change the pattern from one block to the next
- · Random block sizes

Stratification (of the Randomization)

- · Forces balance
- Randomize within strata to control for important prognostic factors that may be imbalanced between treatment arms
- Always stratify on center to control for variability among sites
- Usually don't stratify on more than 2 or 3 factors
- Generally not necessary for trials larger than 200 patients
- The larger the trial, the more likely randomization will produce comparable groups
- Always control for stratification in the analysis improves efficiency

GAIT (Glucosamine/Chondroitin Arthritis Intervention Trial)

- 5 treatment groups
 - GlucosamineChondroitin
 - Cnongroitin
 - Combination
 - CelecoxibPlacebo
- · Group sizes are equal
- · Stratification factor
 - Baseline Pain score (low moderate, high moderate)
 - Participating Site

GAIT (Glucosamine/Chondroitin Arthritis Intervention Trial)

- · Treatment masking
 - Two bottles of tablets given
 - G, C, G+C or placebo
 - · Celecoxib or placebo
- Randomizations are blocked after every 10 assignments within each stratum combination
- · Randomization blocks are permuted

Problems After Randomization

- Differences between groups can creep in during follow-up
- Can only be minimized but not totally eliminated
 - Biased evaluation
 - Treatment noncompliance
 - Withdrawals from study

Masking (Blinding)

- Concealing the identity of the treatments
- Eliminates effect of biases towards the treatments
- Blinding the patient (single-blind)
- Also blinding the investigator (doubleblind)

-	
-	
-	

Impediments to Masking

- · Medication Trials
 - Side effects
 - Inability to make medications identical in appearance
- Surgery trials
 - Rarely is the patient or investigator masked
- Trials comparing two very different treatment modalities
 - Surgery vs medication
 - Surgery vs no surgery

Blinding Strategies

- If the response is objectively measured, less concern
- · Matching placebo
- Sham surgery (usually not ethical)
- · Independent blinded evaluator
- Not sharing treatment outcomes data with investigators until after all data are collected

Withdrawals From Study

- · Increases with:
 - length of follow-up
 - adverse events
 - lack of effect
- Reduce sample size and statistical power
- Difficult to assess how withdrawals affect treatment comparisons

Withdrawal Bias

- Withdrawal rate differences between groups
 - Did the treatment cause the withdrawal?
 - Reduces comparability of the randomized groups
 - Less data in one group
- Large but equal withdrawal rate
 - Are characteristics of withdrawn patients different from those who remain in study?

Follow-up Strategies

- Attempt to follow up all randomized patients, even if they are noncompliant
- Aggressively try to prevent losses to follow-up and withdrawals of consent
- · Accept few reasons to withdraw
 - Death
 - Withdrawal of consent
 - Loss to follow-up

VA CSP #246 TURP vs WW for BPH -1

- Participants with moderately symptomatic BPH randomly assigned to undergo TURP or watchful waiting
- 10% refused TURP after randomization
- 25% eventually crossed over to TURP from WW

-	

VA CSP #246 TURP vs WW for BPH - 2

- TURP refusals had lower level of symptoms at baseline than others
- Crossovers to TURP had higher level of symptoms at baseline
- If analysis was restricted to those who stayed with the assigned treatment, the TURP group would have started out with more symptoms than the WW group

VA CSP #246 TURP vs WW for BPH - 3

- If analysis was according to the treatment received, the TURP group also would have started out with more symptoms than the WW group
- Intention to treat: analyze according to the original assignment. The only analysis where the treatment groups are comparable at baseline

VA CSP #246 TURP vs WW for BPH - 4

- · Analysis done all 3 ways
- TURP was superior to WW regardless of the analysis
- NEJM published only the intent to treat analysis
- Side note: Large % of WW patients did well. That was the result that received the most press.

_	_
_	_
_	
_	_
_	_
_	_
_	_
_	_
_	
_	_
_	
_	_
_	_
_	_
-	_
_	_
_	_
_	_

Classification of RCT's

- Phase I safety and dosing
- · Phase II limited efficacy
- Phase III efficacy / effectiveness
- Phase IV post marketing surveillance
 - Safety when given to large numbers of patients

Common Types of RCT Designs

- · Parallel group
- Factorial
- Equivalence
- Crossover
- · Large, simple
- · Cluster/community designs

Parallel Group

- · Most typical design
- · Usual design for drug trials
- Randomize to one of 2 or more treatment groups and follow patients over time
 - 2 treatment arms most common, i.e. drug vs. placebo

Parallel Group

Multiple treatment arms

- Advantages
 - test more than one treatment/dose with a single control group
 - compare multiple treatments/doses in one trial
- Disadvantage
 - Increases sample size Type-I error correction for multiple comparisons

VA Cooperative Study #290 Monotherapy of Hypertension

- Which type of antihypertensive medication is most effective in controlling blood pressure
- 7 Treatment Groups!
 - Diuretic (hydrochlorothiazide)
 - Beta Blocker (prazosin)
 - ACE Inhibitor (captropril)
 - Calcium Channel Blocker (diltiazem)
 - Alpha Blocker (prazosin)
 - Central Alpha 2 agonist (clonidine)
 - Placebo

VA Cooperative Study #290 Complexity Upon Complexity

- Phase A
 - -randomize to one of 7 treatments
- Phase B
 - -if phase A treatment was not effective, rerandomize to one of the 6 other treatments
- Phase C
 - If phase B treatment was not effective, add the original phase A treatment
 - 15 treatment combinations (placebo not included)

Factorial

- · Evaluate treatments given singly and in combination
- · Ideally involves treatments that don't interact with each other
- Endpoints or disease can be the same or different

Factorial Trials

Advantages

- · Test 2 or more hypotheses in 1 experiment
- · Allows for an exploratory analysis of the effect of combination therapy
 - very important if combination therapy is likely
 - If study of interaction important, a large sample size is required
- · Increased acceptability by patients
- 2 x 2 factorial only 1/4 receive placebo

Disadvantages

- · A negative interaction loss of power
- A significant interaction tremendous loss of power -1/2 the sample size

Examples of Factorial Trials

Physicians' Health Study

- 2x2 factorial to determine whether:
 - low dose aspirin decreases CV events
 - vitamins reduce incidence of cancer
 - no interaction expected
 - endpoints different for each treatment

CSP #484 - Heart Failure -PSF Trial

- · 2x2 factorial to determine whether:
 - a beta-blocker and/or an ARB reduces all-cause mortality + CV hospitalization
 - possible treatment interaction
 - same endpoint for both treatments

2 x 2 Factorial

- · Most common factorial design
- For two treatments, A and B, patients assigned to one of 4 treatment groups
 - A alone
 - B alone
 - Both A + B
 - Neither A nor B
- GAIT study
 - 2 X 2 factorial with an active comparator
 - G, C, G+C, placebo, celecoxib

2 x 2 Factorial

No

Drug B

Yes

Jrug A

No Yes

A-B- A-B+

Marginal or Main Effect

Drug B

V No Yes

No Yes

A-B- A-B+ A
A+B- A+B+ A+

B- B+

Treatment Interaction

No interaction

- · Effect of treatment A is not influenced by B and vice versa
 - Example both A and B when given alone increase QOL by 10 points and in combination they increase it by 20 points

Interaction

- Effect of the treatment combination is different than the effect of either treatment given alone (interaction can be negative or positive)
 - Example of a negative interaction A and B in combination improve QOL by only 15 points
 - Example of a positive interaction A and B in combination improve QOL by 25 points

Types of Interactions SO 45 40 A+B (no Interaction) SO Placebo IS 10 SO R A+B (Interaction) A+B (Interaction)

Equivalence Trials

- Active Control Equivalence Study
- Show therapies same within a certain tolerance
- Typically used to evaluate if a therapy is equivalent to the standard treatment but with a lower side effect profile or lower cost
 - cancer treatments
 - antibiotics

	_
-	
	_

Equivalence Trials

- · Setting tolerance limit can be difficult
 - How to define equivalent
 - Often set too high because of sample size
- Equivalence studies require large sample sizes to rule out small differences
 - smaller the difference the larger the study
- The use of confidence intervals is the preferred method of analysis

VA SCCOPE Trial

- Show not giving steroids equivalent to giving steroids for COPD
- Endpoint = treatment failure
- Powered to detect placebo no worse than steroids by 7.5%
 - Placebo steroid < 7.5%
- · Large criterion for equivalence
- Study showed placebo was not statistically significantly equivalent or steroids efficacious
- · Points out problem with equivalence designs

Crossover Designs

- Each patient receives all treatments in different time periods with a washout period in between
- · Randomize order of treatments: AB, BA
- Efficient if no carryover effects from one time period to the other
 - Problem with drugs
- Yield smaller sample sizes because each subject serves as own control
- Rare but sometimes used for psychiatric studies or phase -I drug trials for dosing

 	 ·	

VA CSP #418 Hearing Aid Trial

- 3 period, 3 treatment crossover design
- Studied 3 types of hearing aids (ABC)
- · Don't expect carryover effects
- Subjects randomized to one of six possible sequences of hearing aids
 - ABC
 - ACB
 - BAC
 - BCA
 - CAB
 - CBA

Large, Simple Trials

- European/Canadian approach
- · Answer important question quickly and/or definitively
- · Hard endpoints no central review
- · Small/moderate treatment effects
- · Enroll large numbers of patients
- Little data collection/QC
- · Pragmatic difficult to study mechanisms
- · Physician's Health Study

Cluster Designs

- Use when its more practical or necessary to administer treatments to groups of patients
 - Clinics
 - Communities
- CSP #470 Gulf War EBT Trial, CBT administered to groups
 - Unit of analysis is the group not patient
- CSP #704 Informed consent sub-study, VAMC randomized to consent document
 - Unit of analysis is the hospital not patient
